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Abstract. Inthis note we address the problem of finding the GM-estimator for the location parameter
of a univariate random variable. When this problem is non-convex but d.c. one can use a standard
covering method, which, in the one-dimensional case has a simple form. In this paper we exploit
the structure of the problem in order to obtain d.c. decompositions with certain optimality proper-
ties in the application of the algorithm. Numerical results show that this general-purpose algorithm
outperforms previous ad-hoc methods for this problem.
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1. Themodd

Given a sample of n observations yi, yo, ... , y, the determination of a parameter
that, in some sense, represents the data is a classical problem in Statistics. In the last
decades the traditional least-squares method has been more and more frequently
replaced by other approaches with better properties of robustness [19].

In particular, an M-estimator [14, 15], is an optimal solution of an optimization
program of the form

inf > p(r0)), (1)
1<j<n
where (r1(0), ... , r,(0)) is the vector of residuals,

ri@) =y;—0 j=12,...,n

and p : R — R is some continuous, even and nondecreasing function in R*.

The class of M-estimators has been further enlarged to the class of so-called
GM-estimators (generalized M-estimators), in which the influence of each residual
is made dependent on the observation y;. In other words, 6* is said to be a GM-
estimator if it solves an optimization problem of the form

inf o (), )
with
a) = ) p;@),

1<j<n
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Table 1. Examples of functions p

Name o)
1—cost ifjt|<n
1 Andrews
2 else
3
_(1_-42 i <
2 Biweight 1-(1-22)" ify <1
3 else
3 Cauchy $log (1 + t2>
4 Fair lt] —log (1 + |z])
2 if|7] <1
5 Huber 2 =
[t] — 5 else
6 Logistic log (cosh 1)
7 6y (p=1 I[P
t2 .
Lk <
8 Talwar 12 i <1
3 else
1 —2\?
9 Welsch 5 (1 —e )

each p; is typically of the form

yj—1
pj(t) =w;p ( )
J J Cj

for predetermined constants w; and C;, and p a function as above. A list of typical
examples of funtions p found in the literature [8, 15, 19], is presented in Table 1.
Finding a GM-estimator leads to solve Problem (2) in the case in which the
scale parameter is assumed to be known. A much more realistic situation should
considerate the estimation of the scale parameter simultaneously with the location
coefficient [16]. Usually the scale estimation is computed by means of Eq. (3)

> 1 (2) =0 @

1< j<n

where x : R —> R. Nevertheless, in some models the estimation process altern-
ates between the computation of the location parameter and the computation of
the scale coefficient. For example, in MM-estimation [24] a three-stage procedure
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is used. In the first stage a tentative approximation to the location parameter is
computed assuming a fixed scale coefficient. In the second stage a M-estimate
s* of the errors scale is obtained using, in equation (3), residuals based on the
initial estimate. Finally, in the third stage an M-estimate of the location parameter
is computed by solving Problem (2) with C; = s*forall j =1...n.

In this paper, we restrict ourselves to this third stage of the process which is, in
general, a difficult task, mainly due to the fact that the functions p; used in Problem
(2) may be non-convex, as is the case of the functions 1, 2, 3, 8, 9 of Table 1.

The usual strategy (e.g., [1, 8, 10, 15, 20, 21, 24]) for coping with (2) consists
of deriving the normal equation

Y. pj6)=0 (4)

1<j<n

a zero of which is sought by means of an iterative procedure (e.g., Newton method).

Since (4) is not a sufficient condition for optimality in the non-convex case,
such iterative procedures, strongly dependent of the initial guess, may be trapped
in the neighborhood of a zero of (4) which does not represent a global minimum of
(2).

When the problem is non-convex one has to choose between seeking a local
minimum (close to the initial value, thus pressumably retaining some of its proper-
ties) or a global minimum. For the latter case, one can use well-known numerical
procedures such as the covering method, first proposed by Piyavskii, [17], see also
[3, 4, 5]. An outline of the algorithm is given below.

ALGORITHM 1.

Initialization: Find a compact interval R* known to contain an optimal solution of
(2). Set BEST.THETA equal to an arbitrary 6; € R* and set BEST.VALUE :=
o (BEST.THETA).

Construct E® and set k = 1.
Step k: Set

LBOUND = min E®(9) (5)
6eR*

and let 6,1 be its optimal solution. If BEST.VALUE —LBOUND < ¢ then GoTo
Output. Else, do:

1. Construct E*+D from E®.
2. Update, if required, BEST.VALUE and BEST.THETA
3. GoTo step k + 1.

Output: STOP: BEST.THETA is an e-optimal solution.

The three critical issues of the algorithm are
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1. Building R*.
2. Defining the lower envelopes E* of o in order to guarantee convergence.
3. Solving the auxiliary problems (5).
Since p is assumed to be even and non-decreasing in R, we can take as R* the
interval given by the extreme observations,

R* = [ min y;, max yj:|. (6)
j=1,....n j=1,...n

In what follows we customize Algorithm 1 for the one-dimensional problem (2)
under the extra assumption that each p; is the difference of two convex functions,
i.e.,itisd.c., [11, 12, 22].

Hence, by the algebra of d.c. functions, o is d.c. Let 0 = oy — 0, be a d.c.
decomposition of o, and let o;(6;; & — 6;) be the directional derivative of o, at 6;
in the direction 8 — 6, i.e.,

o1(6;i +1(60 —6;)) — 01(6)
t

0,050 —6;) = Itiw
Let &; be given as
hi(0) = 01(60;) + 01(6;; 6 — 6;) — 02(6), (7
and define E® as the pointwise maximum of the functions #;,

E® = max h;
1<i<k

Observe that this slightly differs from the standard choice h;,
hi(0) = 01(6;) + 0: (6 — 6;) — 02(6), (8)

with n; € d01(6;), the subdifferential of o, at 6;.
Since

o'(0;;0 — 0;) = max{n(® — 6;) : n € 901(6)},

[18], we see that ; > h;. Moreover, such a choice will yield certain optimality
properties, see Section 2.

We will show in this section that, with this choice, Problem (5) is solved after
inspecting at most two easily located points, and the updating of E® is straight-
forward.

Moreover, the finiteness of the algorithm directly follows from [4, 17], as stated
in Proposition 1

PROPOSITION 1. Forallk=1,...,

E(k) g E(k+l) < o.
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Moreover fori =1, ... ,k,

ED6,) =0 (6).
If BEST.VALUE and LBOUND are as above, then:

(a) ]!|Tm BEST.VALUE (k) = emkn o(0)
o) €R*
(b) ]!iTm(BEST.VALUE(k) — LBOUND(k)) =0

We discuss now how to solve (5), showing that finding an optimal solution of
(5) and updating E® can be done in a straightforward manner.

PROPOSITION 2. Letk > i. The sets

I', =10 € R*| (0
1F :=1{0 e R*| ;0

hs(0), 6

0, Vs=1,... k)
hy(0), 6 1

) >
) <6, Vs =

VoWV

are intervals with 6, € 15, N 11

Proof. First, 6; € I, N1} since h;(6;) = o (6;) = EX(6,) > hy(6;) forall s.
Now, observe that o, (6,; 6 — 6;) is convex in 6, with

01O —6y), if 0 =6

/ . _ —
01056 =) = { ol (0O —0,). if 6<6,"

oy, and oy_ denoting the right and left derivatives of o;.
We have

{60 =6i1hi(0) > EX©O)}) =
= {0 = 6i101(6) + 01650 — 6;) > max o1(6;) + 07(6s; 0 — 6;)}

1<s<k

= {0 = 6i101(6) + 01,(0)(6 — 6;) = max o1(6;) + 01(05; 0 — 6,)}
1<s<k

= {6 >6,10> max o1(6,) + 01(6;: 0 — 6;) — 01(6;) — 01, (6)(0 — 6))}

1<s<k

which is an interval since it is the lower level set of a convex function. Hence
15, = R*N{6 > 6,1 h;(9) = EP(H)}is an interval.
In the same manner I,-k_ is another interval, with 6; as endpoint. O

From this we have

PROPOSITION 3. E™® is a piecewise concave function, having the intervals 7, , IS,

147
... I, If_ as domains of concavity.
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REMARK 1. Proposition 2 enables us to easily update E*+V from E®, since
they only differ in one interval, namely 7,75 = IS/} _ U I
. k+1
E®(9), if 0¢ 117;11
E®D©0) = { 01(6k11) + 01, 6r31) (0 — 1) — 0200), if 6 € )7,
01(Ok+1) + 01_(Ok41) (0 — Oy1) — 0200), if 6 € 1:111,_

Hence, in order to solve (5) we have

min E® ) = min {min A(0), min h(6)}.
OeR* 1<s<k QE]lk 9€Isk+

§—

This joint with Proposition 1 imply the following

PROPOSITION 4. At Step k of Algorithm 1 the optimal solution 6,1 of Problem
(5) either coincides with 6, (in which case it is optimal for Problem (2)), or it is an
endpoint of an interval 7} := I1* U 1.

REMARK 2. By Proposition 4, in order to minimize the new envelope function

E*+D we only need to inspect two new points, namely the endpoints of the interval
ey

2. Constructing the d.c. decomposition

Solving Problem (2) by using Algorithm 1 requires the knowledge of a d.c. rep-
resentation for the objective function. Although obtaining explicitly a decompos-
ition for an arbitrary d.c. function may be far from trivial, this task turns out to
be very simple in our case. Indeed, using the standard techniques of [12, 22],
d.c. decompositions for all the non-convex functions p of Table 1 can be directly
derived.

For instance, for Function 8 in Table 1, we have

(t)—min{t2 1}

PR =TS 5
t? . 1 12
:E+m|n{0,§—5}
—tz max{0 i 1}
2 22

On the other hand, for Function 3 in Table 1, we have that

1—¢2

P (f):m,
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thus
11—+ -1

"(t) > min ——— = —,
PO 2N T2 "8

yielding the d.c. decomposition of p
12 112
p(t) = ('O(t)—i_ig) ~ 5% ©)

A similar analysis can be carried out for the remaining non-convex functions p
of Table 1.
Once a d.c. decomposition of p,

p(t) = a(t) — B(1)
is given, one immediately obtains a d.c. decomposition for p;,

v Yi= O\ (Y0
/01(9)—Ot< C ) ﬂ(—cj )

and then a d.c. decomposition for o is given by

yj—#0 yj—#0
o(@):Za(’Cj >_Zﬂ<jcj )
1<j<sn

1<j<n

For a given function p, more than one d.c. decomposition may be found. In spite
of the fact that the choice of the decomposition influences the speed of conver-
gence of the algorithm, see [3, 4] and Section 3, this is usually ignored in the
literature. Here, good d.c. decompositions are sought, and we will prove that, under
certain conditions, an optimal (in a sense described later) decomposition for this
particularization of Algorithm 1 can be obtained.

This result will be used for finding an optimal d.c. decomposition for every term
in (2) and, from here, a heuristic good representation for o.

Let us consider the set O of real d.c. finite functions defined over an open in-
terval of R that contains the closed bounded interval 7 where the optimization will
be carried out. We recall the reader that any function f € D has side derivatives
and these are of bounded variation on 7, [7].

The following result is given in [9]:

LEMMA 1. Let f € D,6 € I,and let N, (t) denote the negative variation of f’,

the left derivative of £, in the interval with endpoints 6 and 7.
Then the functions

0
¥[010) == £(0) + /@ Nj(t)dt

0
y[61(6) := / Ny(t)dt
]

are convex. In particular, ¥[9] — y[0] is a d.c. decomposition of f.
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Our aim is to use the decomposition given in Lemma 1 for the functions p; in
Problem (2). The suitability of such a choice in Algorithm 1 is motivated in the
following results.

First we show that the choice of 4 is not relevant, since we always obtain the
same lower envelope.

LEMMA 2. Let f € D and 6y, 6 € I. Let w[0] and y[A] be defined as in Lemma
1. Then, the function

0 € I —> ¥[01(60) + ¥I01_(60)(6 — 6) — y[01(F)

does not depend on 6.
Proof. First of all, note that ([18], Theorem 24.2):

5 JL(60) (0 — o) + N, (6o) (0 — o) if 6<bp
01 (60,60 —60) =1 °,, J .
V16100, 6 — o) {f+(90) (0 — 60) + N (0) (0 — 60) if 6> 6,
where f7 and f’ are respectively the right and left derivatives of f and
_ T n T
N; (60) = e!'g]o N;(©) N; (60) = (!IQO N;(©)
Given 6 < 6, one has that:

¥[01(6o) + v [01(60) (6 — 6o) — y[01(6)
0o

=f(6o) + p N;(§)dE + f7(60) (0 — 6o) + N3 (60) (6 — o)

0
- fe N ()de
0
—f @)+ F160) 0 —60) — [ N;©)de + N (65) 0 — 60)

o

0
=f(00) + fL(60) (6 — 60) — fe {N3(§) = N, (6o)}d§

0
=f(60) + f_(6o) (6 — bo) — ; {Noo(§) — Ny, (60)}d§
0
=f00) + fL(60) (0 — 00) + Ny, (60) (6 — 6p) — ; Ny, (§)d§
=y [001(60) + ¥ [601(B0) (6 — Op) — ¥ [661(6)
since
Ny(&) — Ny (6o) = N;(§) + Ny(6o) — Ny (6o) — Ny (6o)
= Ngo(§) + Ny(6o) — N, (6o)
= Ng,(§) — Ny, (60)
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In the same manner, one can cope with 6 > 6, so that the function
0 € 1 — ¥[01(6) + VI01_(00) (O — 6o) — y[01(0)

does not depend on 6. 0

The following result establishes the optimal behaviour of the decomposition of
Lemma 1 for applying Algorithm 1, in the following sense: given 6, € I, the
bounding function that it provides is a pointwise majorant for the bounding func-
tion obtained from any other d.c. decomposition. In this way, the minimum value of
the envelope E® provided for this d.c. decomposition will be greater or equal than
the minimum of the envelope built from any other representation, so the algorithm
should converge more quickly.

PROPOSITIONS. Let f € £ and 6 € I. Let ¢ —y be the d.c. decomposition of
Lemma 1 and = — A any other d.c. decomposition of f. Then, one has for all 6 € 1

¥ (00) + ¥ (00)(0 — 6o) — ¥ (0) = T(6o) + T_(60) (0 — 6o) — A(6).

Proof. Let & < 6y. Then, since f = t — A, with T and A convex, f’ is the
difference of two non-decreasing functions, namely
= —i.
Making use of the properties of the bounded variation functions, [7], one has that:

Nop(§) < Tyo(§) = AL (§) — AL (o)

where Ny, (£) denotes the negative variation of f and Ty, (&) is the total variation
of A”_in the interval [0, £]. Since A is convex, integrating the previous expression
between 6, and 6, it follows that ([18], Corollary 24.2.1):

%
Ny, (£)dE < 1(0) — 1(6g) — A_(60) (0 — 6p)
0o

from where, since A = t — f, we obtain:

4
f(00) + fL(B0) (0 —00) — [ Ney(§)dé

0o
> 1(00) + 12 (00) (0 — ) — A(0)

A similar analysis can be carried out for the case 6 > 6y, yielding the result. O

The following result establishes the optimality of a classical d.c. decomposition
for certain types of functions. Indeed, the d.c. decomposition for a G?-function
proposed in [2], is a particular case of the representation of Lemma 1 and, using
Proposition 5, it is optimal for applying Algorithm 1.
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PROPOSITION 6. Let I C R be a compact interval and let f : I — R be a
twice continuously differentiable function. Given 6y € I, the d.c. decomposition
f@)=1(©)—r0)

with
0
7(8) = f(6) + f'(60)(0 — 6o) +/9 O —8&[f"(&)]1"dé
6
A0) = ; O —&[f" )] dg

where [A]T = max(0, A) and [A]” = max(0, —A), gives the representation of
Lemma 1.

Proof. The function A in (6) can be written as follows:

f;(e—snf”(sn-ds = /:( / T w)ds = f:( “1y@rde)as

Taking into account that N (w) = fg‘;’[ f"(&)]” d& provides the negative variation of
f’ on the interval [0y, w], we obtain the d.c. decomposition of Lemma 1. O

To sum up, Propositions 5 and 6 provide a heuristic procedure for constructing
d.c. decompositions for o in Algorithm 1, based on the construction of an optimal
decomposition for every term p;.

3. Numerical Examples

In order to test the sensitivity of the procedure with respect to the d.c. decomposi-
tion chosen, we address here the particular case in which p is Function 3 of Table
1.

This instance has attracted the interest of many researchers in Statistics since it
is, essentially, the problem of the Maximum Likelihood Estimation for the single-
parameter Cauchy distribution, whose probability density function is given by

T Ppp———
FO0) = TG ey

Indeed, the log-likelihood function for a sample of » independent observations
Y1, ..., yn beCOMes

L@®)=-nlogm — > log(1+ (y; — 6)?)

1<j<n
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Table 3. Computational results for Cauchy likelihood

Sample Starting Number of iterations
Sample Size Interval Point Wingo  Breiman-Cutler  Algorithm 1
A 4 [3,17] 9.5 71 16 12
B 10 [2,26] 13.0 107 21 12
C 25 [4.1,2745.6] 2425 1048 391 23
D 50 [952.1,1047.9] 999.5 - 20 11
E 100 [74.3,4905.2] 23321 - 1919 63

whose maximum can be computed by solving (2) with o equal to the Cauchy
function and taking w; = C; =1for j =1,... ,n.

This is a global optimization problem (the objective function can exhibit up to
n local optima) which resolution using deterministic methods has been carried out
in [23] by means of a derivative-free algorithm due to Brent (1973), and afterwards
in [5], making use of a covering method.

Since p is a G2-function, we can use Proposition 6 to obtain an optimal d.c.
decomposition for p;, yielding p;(6) = ¥;(8) — (¥;(0) — p;(6)) with

(log2—1+(y;—9), ifo <y —1
log (1+ (y; —6)?), ify, —1<60<y +1
(log2—1-(y;—9), ifo>y +1

Y (0) =

NI NI NI

and, using (2), a (good) d.c. decomposition for the objective function of (2) can be
built from here.

Table 3 shows the number of iterations spent by Algorithm 1 and the other
ones previously mentioned, for the three sets of data used by Wingo [23], and two
additional sets of [4], see Table 2 and Figures 1 and 2.

The results for Wingo and Breiman-Cutler methods have been taken from [23]
and [5]. Note that the function L () is unimodal for data set D.

In this implementation of Algorithm 1, we have taken as initial set R* =
[mini< <, yj, MaXi< j<n ¥;1, Since it always contains the optimal solution, as we
mentioned before.

The comparison of Algorithm 1 with Breiman-Cutler method is specially inter-
esting, since they both have the same structure; in fact, it has been proved in [3, 4]
that the latter is a particular case of the former using a specific d.c. decomposition,
namely (9). This shows that the choice of the d.c. representation may strongly
affect the speed of convergence of the algorithm, since each iteration in both al-
gorithms takes approximately the same time, whereas the number of iterations in
Breiman-Cutler method may be drastically higher.
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Figure 1. Log-likelihood functions for samples A, B and C.
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Figure 2. Log-likelihood functions for samples D and E.
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